Kindlin-2 regulates hemostasis by controlling endothelial cell-surface expression of ADP/AMP catabolic enzymes via a clathrin-dependent mechanism

Kindlin-2通过网格蛋白依赖机制控制内皮细胞表面ADP/AMP分解代谢酶的表达来调节止血

阅读:4
作者:Elzbieta Pluskota, Yi Ma, Kamila M Bledzka, Katarzyna Bialkowska, Dmitry A Soloviev, Dorota Szpak, Eugene A Podrez, Paul L Fox, Stanley L Hazen, James J Dowling, Yan-Qing Ma, Edward F Plow

Abstract

Kindlin-2, a widely distributed cytoskeletal protein, has been implicated in integrin activation, and its absence is embryonically lethal in mice. In the present study, we tested whether hemostasis might be perturbed in kindlin-2(+/-) mice. Bleeding time and carotid artery occlusion time were significantly prolonged in kindlin-2(+/-) mice. Whereas plasma concentrations/activities of key coagulation/fibrinolytic proteins and platelet counts and aggregation were similar in wild-type and kindlin-2(+/-) mice, kindlin-2(+/-) endothelial cells (ECs) showed enhanced inhibition of platelet aggregation induced by adenosine 5'-diphosphate (ADP) or low concentrations of other agonists. Cell-surface expression of 2 enzymes involved in ADP/adenosine 5'-monophosphate (AMP) degradation, adenosine triphosphate (ATP) diphosphohydrolase (CD39) and ecto-5'-nucleotidase (CD73) were increased twofold to threefold on kindlin-2(+/-) ECs, leading to enhanced ATP/ADP catabolism and production of adenosine, an inhibitor of platelet aggregation. Trafficking of CD39 and CD73 at the EC surface was altered in kindlin-2(+/-) mice. Mechanistically, this was attributed to direct interaction of kindlin-2 with clathrin heavy chain, thereby controlling endocytosis and recycling of CD39 and CD73. The interaction of kindlin-2 with clathrin was independent of its integrin binding site but still dependent on a site within its F3 subdomain. Thus, kindlin-2 regulates trafficking of EC surface enzymes that control platelet responses and hemostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。