Nrf2 Deficiency Exacerbates Cognitive Impairment and Reactive Microgliosis in a Lipopolysaccharide-Induced Neuroinflammatory Mouse Model

Nrf2 缺乏加剧脂多糖诱导的神经炎症小鼠模型中的认知障碍和反应性微胶质增生

阅读:4
作者:Lei Liu, Marie G Kelly, Xiao Rui Yang, Tyler G Fernandez, Erika L Wierzbicki, Anna Skrobach, Sylvain Doré

Abstract

The transcription factor Nrf2 is a central regulator of anti-inflammatory and antioxidant mechanisms that contribute to the development and progression of various neurological disorders. Although the direct and indirect Nrf2 regulatory roles on inflammation have been reviewed in recent years, the in vivo evidence of Nrf2 function on lipopolysaccharide (LPS)-induced cognitive decline and characteristic alterations of reactive microglia and astrocytes remains incomplete. During the 3-5 days after LPS or saline injection, 5-6-month-old wildtype (WT) and Nrf2-/- C57BL/6 mice were subjected to the novel object recognition task. Immunohistochemistry staining was employed for analyses of brain cells. The Nrf2-/- mice displayed exacerbated LPS-induced cognition impairment (28.1 ± 9.6% in the discrimination index of the novel object recognition task), enhanced hippocampal reactive microgliosis and astrogliosis, and an increased expression level of the water channel transmembrane protein aquaporin 4 when compared with WT controls. In addition, similar overt effects of Nrf2 deficiency on LPS-induced characteristic alterations of brain cells were observed in the cortex and striatum regions of mice. In summary, this transgenic loss-of-function study provides direct in vivo evidence that highlights the functional importance of Nrf2 activation in regulating LPS-induced cognitive alteration, glial responses, and aquaporin 4 expression. This finding provides a better understanding of the complex nature of Nrf2 signaling and neuroprotection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。