Disease-causing mutations in the acidic motif of WNK4 impair the sensitivity of WNK4 kinase to calcium ions

WNK4 酸性基序的致病突变会削弱 WNK4 激酶对钙离子的敏感性

阅读:4
作者:Tao Na, Guojin Wu, Ji-Bin Peng

Abstract

WNK4 is a serine/threonine protein kinase that is involved in pseudohypoaldosteronism type II (PHAII), a Mendelian form disorder featuring hypertension and hyperkalemia. Most of the PHAII-causing mutations are clustered in an acidic motif rich in negatively charged residues. It is unclear, however, whether these mutations affect the kinase activity in any way. In this study, we isolated kinase domain of WNK4 produced by Escherichia coli, and demonstrated its ability to phosphorylate the oxidative stress-responsive kinase-1 (OSR1) and the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) in vitro. Threonine 48 was identified as the WNK4 phosphorylation site at mouse NCC. The phospho-mimicking T48D mutant of mouse NCC increased its protein abundance and Na(+) uptake, and also enhanced the phosphorylation at the N-terminal region of NCC by OSR1. When the acidic motif was included in the WNK4 kinase construct, the kinase activity of WNK4 exhibited sensitivity to Ca(2+) ions with the highest activity at Ca(2+) concentration around 1 μM using kinase-inactive OSR1 as a substrate. All tested PHAII-causing mutations at the acidic motif exhibited impaired Ca(2+) sensitivity. Our results suggest that these PHAII-causing mutations disrupt a Ca(2+)-sensing mechanism around the acidic motif necessary for the regulation of WNK4 kinase activity by Ca(2+) ions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。