Mismatch repair proteins and AID activity are required for the dominant negative function of C-terminally deleted AID in class switching

错配修复蛋白和 AID 活性是 C 端缺失的 AID 在类别转换中发挥显性负功能所必需的

阅读:6
作者:Anna J Ucher, Sanjay Ranjit, Tatenda Kadungure, Erin K Linehan, Lyne Khair, Elaine Xie, Jennifer Limauro, Katherina S Rauch, Carol E Schrader, Janet Stavnezer

Abstract

Activation-induced cytidine deaminase (AID) is essential for class-switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The AID C terminus is required for CSR, but not for S-region DNA double-strand breaks (DSBs) during CSR, and it is not required for SHM. AID lacking the C terminus (ΔAID) is a dominant negative (DN) mutant, because human patients heterozygous for this mutant fail to undergo CSR. In agreement, we show that ΔAID is a DN mutant when expressed in AID-sufficient mouse splenic B cells. To have DN function, ΔAID must have deaminase activity, suggesting that its ability to induce DSBs is important for the DN function. Supporting this hypothesis, Msh2-Msh6 have been shown to contribute to DSB formation in S regions, and we find in this study that Msh2 is required for the DN activity, because ΔAID is not a DN mutant in msh2(-/-) cells. Our results suggest that the DNA DSBs induced by ΔAID are unable to participate in CSR and might interfere with the ability of full-length AID to participate in CSR. We propose that ΔAID is impaired in its ability to recruit nonhomologous end joining repair factors, resulting in accumulation of DSBs that undergo aberrant resection. Supporting this hypothesis, we find that the S-S junctions induced by ΔAID have longer microhomologies than do those induced by full-length AID. In addition, our data suggest that AID binds Sμ regions in vivo as a monomer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。