Herpes simplex virus type 1 induces filopodia in differentiated P19 neural cells to facilitate viral spread

型单纯疱疹病毒在分化的 P19 神经细胞中诱导丝状伪足,以促进病毒传播

阅读:5
作者:Rohan Dixit, Vaibhav Tiwari, Deepak Shukla

Abstract

Herpes simplex virus type-1 (HSV-1) is a neurotropic virus with significant potential as a viral vector for central nervous system (CNS) gene therapy. This study provides visual evidence that recombinant green fluorescent protein (GFP)-expressing HSV-1 travel down dendrites in differentiated P19 neuronal-like cells to efficiently reach the soma. The virus also promotes cytoskeletal rearrangements which facilitate viral spread in vitro, including often dramatic increases in dendritic filopodia. Viral movements, cell infection and filopodia induction were each reduced with the actin polymerization inhibitor cytochalasin D, suggesting the involvement of the actin cortex in these processes. The observation of neural cytoskeletal reorganization in response to HSV-1 may shed light on the mechanisms by which acute viral infection associated with herpes encephalitis produces cognitive deficits in patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。