Highly Accurate Estimation of Cell Type Abundance in Bulk Tissues Based on Single-Cell Reference and Domain Adaptive Matching

基于单细胞参考和域自适应匹配的大量组织中细胞类型丰度的高精度估计

阅读:7
作者:Xinyang Guo, Zhaoyang Huang, Fen Ju, Chenguang Zhao, Liang Yu

Abstract

Accurately identifies the cellular composition of complex tissues, which is critical for understanding disease pathogenesis, early diagnosis, and prevention. However, current methods for deconvoluting bulk RNA sequencing (RNA-seq) typically rely on matched single-cell RNA sequencing (scRNA-seq) as a reference, which can be limiting due to differences in sequencing distribution and the potential for invalid information from single-cell references. Hence, a novel computational method named SCROAM is introduced to address these challenges. SCROAM transforms scRNA-seq and bulk RNA-seq into a shared feature space, effectively eliminating distributional differences in the latent space. Subsequently, cell-type-specific expression matrices are generated from the scRNA-seq data, facilitating the precise identification of cell types within bulk tissues. The performance of SCROAM is assessed through benchmarking against simulated and real datasets, demonstrating its accuracy and robustness. To further validate SCROAM's performance, single-cell and bulk RNA-seq experiments are conducted on mouse spinal cord tissue, with SCROAM applied to identify cell types in bulk tissue. Results indicate that SCROAM is a highly effective tool for identifying similar cell types. An integrated analysis of liver cancer and primary glioblastoma is then performed. Overall, this research offers a novel perspective for delivering precise insights into disease pathogenesis and potential therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。