SIV-specific CD8+ T cells express high levels of PD1 and cytokines but have impaired proliferative capacity in acute and chronic SIVmac251 infection

SIV 特异性 CD8+ T 细胞表达高水平的 PD1 和细胞因子,但在急性和慢性 SIVmac251 感染中增殖能力受损

阅读:8
作者:Constantinos Petrovas, David A Price, Joseph Mattapallil, David R Ambrozak, Christof Geldmacher, Valentina Cecchinato, Monica Vaccari, Elzbieta Tryniszewska, Emma Gostick, Mario Roederer, Daniel C Douek, Sara H Morgan, Simon J Davis, Genoveffa Franchini, Richard A Koup

Abstract

Programmed death-1 (PD-1) is a critical mediator of virus-specific CD8+ T-cell exhaustion. Here, we examined the expression of PD-1 on simian immunodeficiency virus (SIV)-specific CD8+ T cells and its possible involvement in regulation of cytokine production, proliferation, and survival of these cells. The majority of SIV-specific CD8+ T cells expressed a PD-1(high) phenotype, independent of their differentiation status, in all tissues tested. PD-1 expression gradually declined on CD8+ T cells specific for SIV-derived epitopes that had undergone mutational escape, indicating that antigen-specific TCR stimulation is the primary determinant of PD-1 expression. SIV-specific PD-1(high)CD8+ T cells produced IFN-gamma, TNF-alpha, and IL-2 under cognate peptide stimulation. While CD8+ T cells that proliferated in response to antigen had a PD-1(high) phenotype, it was determined that there was a reduced proliferative capacity of PD-1(high) compared with PD-1(low) SIV-specific CD8+ T cells. PD-1(high) SIV-specific CD8+ T cells were highly susceptible to cell death leading to loss of such cells after in vitro stimulation. Thus, PD-1 is a negative regulator of SIV-specific CD8+ T cells, operating predominantly through the induction of cell death. Manipulation of the interaction of PD-1 with its ligands could thus potentially restore the CD8+ T-cell responses in SIV infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。