Identification and Functional Analysis of miRNAs in Extracellular Vesicles of Semen Plasma from High- and Low-Fertility Boars

高、低生育力公猪精浆细胞外囊泡中miRNA的鉴定及功能分析

阅读:4
作者:Weidong Chen, Yanshe Xie, Zhiqian Xu, Yijun Shang, Wenzheng Yang, Pengyao Wang, Zhenfang Wu, Gengyuan Cai, Linjun Hong

Abstract

Artificial insemination (AI), as an efficient assisted reproduction technology, can help the livestock industry to improve livestock and poultry breeds, optimize production performance and improve reproductive efficiency. AI technology has been widely used in pig production in China, but boar fertility affects the effectiveness of AI, and more and more studies have shown that there are significant differences in the fertility of boars with similar semen quality indicators. Therefore, this study aimed to identify biomarker molecules that indicate the level of boar fertility, which is important for improving the efficiency of AI. In this study, we collected 40 mL of ejaculates per boar used for extracellular vesicle (EV) characterization in 20 boars and identified 53 differentially expressed miRNAs by small RNA sequencing, of which 44 miRNAs were up-regulated in the high-fertility seminal EVs compared with low-fertility seminal EVs, and nine miRNAs were down-regulated. miR-26a was most significantly down-regulated in the high-fertility group compared to the low-fertility group, and it was hypothesized that this miRNA could be used as a biomolecular marker of semen reproductive performance. To further determine the effect of miR-26a on sperm function, we successfully established a miR-26a overexpression model and found that miR-26a reduced sperm viability, motility, acrosome integrity, plasma membrane integrity and ATP levels. Bioinformatics analysis and dual luciferase reporter analysis revealed that miR-26a directly targets High mobility group A1 (HMGA1). In conclusion, miR-26a can be used as a biomarker to identify high and low fertility in boar semen.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。