Methotraxate-Loaded Hybrid Nanoconstructs Target Vascular Lesions and Inhibit Atherosclerosis Progression in ApoE-/- Mice

载甲氨蝶呤的混合纳米结构靶向血管病变并抑制 ApoE-/- 小鼠的动脉粥样硬化进展

阅读:6
作者:Cinzia Stigliano, Maricela R Ramirez, Jaykrishna V Singh, Santosh Aryal, Jaehong Key, Elvin Blanco, Paolo Decuzzi

Abstract

Atherosclerosis is an inflammatory disorder characterized by the progressive thickening of blood vessel walls eventually resulting in acute vascular syndromes. Here, intravenously injectable hybrid nanoconstructs are synthesized for tempering immune cell inflammation locally and systemically. Lipid and polymer chains are nanoprecipitated to form 100 nm spherical polymeric nanoconstructs (SPNs), loaded with methotrexate (MTX) and subsequently labeled with Cu64 and fluorescent probes for combined nuclear/optical imaging. Upon engulfment into macrophages, MTX SPNs intracellularly release their anti-inflammatory cargo significantly lowering the production of proinflammatory cytokine (interleukin 6 and tumor necrosis factor α) already at 0.06 mg mL-1 of MTX. In ApoE-/- mice, fed with high-fat diet up to 17 weeks, nuclear and optical imaging demonstrates specific accumulation of SPNs within lipid-rich plaques along the arterial tree. Histological analyses confirm SPN uptake into macrophages residing within atherosclerotic plaques. A 4-week treatment with biweekly administration of MTX SPNs is sufficient to reduce the plaque burden in ApoE-/- mice by 50%, kept on high-fat diet for 10 weeks. Systemic delivery of MTX to macrophages via multifunctional, hybrid nanoconstructs constitutes an effective strategy to inhibit atherosclerosis progression and induce, potentially, the resorption of vascular lesions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。