Magnolia kobus DC. suppresses neointimal hyperplasia by regulating ferroptosis and VSMC phenotypic switching in a carotid artery ligation mouse model

木兰通过调节颈动脉结扎小鼠模型中的铁死亡和 VSMC 表型转换来抑制新生内膜增生

阅读:6
作者:Jong Min Kim #, Yiseul Kim #, Hyun-Jin Na, Haeng Jeon Hur, Sang Hee Lee, Mi Jeong Sung

Background

Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.

Conclusion

MO has the potential for use as a functional food supplement, nutraceutical, or medicinal food, with protective effects on vascular health by regulating ferroptosis and VSMC phenotypic switching.

Methods

This study was conducted to estimate the vascular protective effects of MO by systematically measuring histopathological analysis and western blot analysis in CAL animal model. In vitro protective effects of MO were evaluated by estimating cell viability, reactive oxygen species (ROS) content, glutathione (GSH) levels, lipid peroxidation, mitochondrial morphological change, cell proliferation, migration, western blot analysis, and qRT-PCR against erastin (Era)-induced A7r5 cells.

Results

MO intake significantly improved neointimal formation, inhibited ferroptosis and vascular smooth muscle cell (VSMC) phenotypes, and ameliorated the antioxidant system of carotid artery tissues. In addition, MO treatment effectively ameliorated Era-induced ferroptotic cytotoxicity, including cellular death, ROS production, and cell migration status. MO treatment also suppressed proliferation and migration in Era-induced A7r5 cells. MO considerably regulated Era-induced abnormal mechanisms related to ferroptotic changes, VSMC phenotype switching, and the ROS scavenging system in A7r5 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。