Deficiency of gap junction composed of connexin43 contributes to oxaliplatin resistance in colon cancer cells

连接蛋白43组成的间隙连接缺陷导致结肠癌细胞对奥沙利铂产生耐药性

阅读:6
作者:Min Su, Qi Zhang

Abstract

Although comprehensive strategies in the treatment of colorectal cancer have been developed for a number of years, the five-year survival rate of metastatic colon cancer remains less than 10%. Oxaliplatin, a commonly used chemotherapeutic agent for metastatic colon cancer, improves the response rate of patients and prolongs patients' progression-free survival. However, the generation of resistance limits the clinical application of oxaliplatin, and the mechanisms of this remain unclear. The present study mainly investigated the effect of the gap junction (GJ) composed of connexin43 (Cx43) on oxaliplatin cytotoxicity in colon cancer cells. Three different methods with distinct mechanisms were used to change the function of Cx43 GJs, including cell culture at different densities, pretreatment with a specific inhibitor or enhancer, and special gene knockdown, to observe the cytotoxicity of oxaliplatin and the level of reactive oxygen species (ROS) mediated by Cx43 GJs. The results revealed that the cytotoxicity of oxaliplatin and the level of ROS were decreased with the downregulation of Cx43 GJ function, but exacerbated with the upregulation of Cx43 GJ function. Moreover, ROS scavenging with N-acetyl-L-cysteine and apocynin decreased the cytotoxicity of oxaliplatin. We concluded that the loss of GJ composed of Cx43 contributed to the resistance of oxaliplatin in colon cancer cells, and the mechanism was associated with intracellular ROS alternation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。