Single-cell phospho-specific flow cytometric analysis demonstrates biochemical and functional heterogeneity in human hematopoietic stem and progenitor compartments

单细胞磷酸化特异性流式细胞分析显示人类造血干细胞和祖细胞区室的生化和功能异质性

阅读:6
作者:Kenneth D Gibbs Jr, Penney M Gilbert, Karen Sachs, Feifei Zhao, Helen M Blau, Irving L Weissman, Garry P Nolan, Ravindra Majeti

Abstract

The low frequency of hematopoietic stem and progenitor cells (HSPCs) in human BM has precluded analysis of the direct biochemical effects elicited by cytokines in these populations, and their functional consequences. Here, single-cell phospho-specific flow cytometry was used to define the signaling networks active in 5 previously defined human HSPC subsets. This analysis revealed that the currently defined HSC compartment is composed of biochemically distinct subsets with the ability to respond rapidly and directly in vitro to a broader array of cytokines than previously appreciated, including G-CSF. The G-CSF response was physiologically relevant-driving cell-cycle entry and increased proliferation in a subset of single cells within the HSC compartment. The heterogeneity in the single-cell signaling and proliferation responses prompted subfractionation of the adult BM HSC compartment by expression of CD114 (G-CSF receptor). Xenotransplantation assays revealed that HSC activity is significantly enriched in the CD114(neg/lo) compartment, and almost completely absent in the CD114(pos) subfraction. The single-cell analyses used here can be adapted for further refinement of HSPC surface immunophenotypes, and for examining the direct regulatory effects of other factors on the homeostasis of stem and progenitor populations in normal or diseased states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。