Obesogenic diet disrupts tissue-specific mitochondrial gene signatures in the artery and capillary endothelium

肥胖饮食会破坏动脉和毛细血管内皮中组织特异性的线粒体基因特征

阅读:17
作者:Luke S Dunaway, Melissa A Luse, Shruthi Nyshadham, Gamze Bulut, Gabriel F Alencar, Nicholas W Chavkin, Miriam Cortese-Krott, Karen K Hirschi, Brant E Isakson

Abstract

Endothelial cells (ECs) adapt to the unique needs of their resident tissue and metabolic perturbations, such as obesity. We sought to understand how obesity affects EC metabolic phenotypes, specifically mitochondrial gene expression. We investigated the mesenteric and adipose endothelium because these vascular beds have distinct roles in lipid homeostasis. Initially, we performed bulk RNA sequencing on ECs from mouse adipose and mesenteric vasculatures after a normal chow (NC) diet or high-fat diet (HFD) and found higher mitochondrial gene expression in adipose ECs compared with mesenteric ECs in both NC and HFD mice. Next, we performed single-cell RNA sequencing and categorized ECs as arterial, capillary, venous, or lymphatic. We found mitochondrial genes to be enriched in adipose compared with mesentery under NC conditions in artery and capillary ECs. After HFD, these genes were decreased in adipose ECs, becoming like mesenteric ECs. Transcription factor analysis revealed that peroxisome proliferator-activated receptor-γ (PPAR-γ) had high specificity in NC adipose artery and capillary ECs. These findings were recapitulated in single-nuclei RNA-sequencing data from human visceral adipose. The sum of these findings suggests that mesenteric and adipose arterial ECs metabolize lipids differently, and the transcriptional phenotype of the vascular beds converges in obesity due to downregulation of PPAR-γ in adipose artery and capillary ECs.NEW & NOTEWORTHY Using bulk and single-cell RNA sequencing on endothelial cells from adipose and mesentery, we found that an obesogenic diet induces a reduction in adipose endothelial oxidative phosphorylation gene expression, resulting in a phenotypic convergence of mesenteric and adipose endothelial cells. Furthermore, we found evidence that PPAR-γ drives this phenotypic shift. Mining of human data sets segregated based on body mass index supported these findings. These data point to novel mechanisms by which obesity induces endothelial dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。