Microporous N-Doped Carbon Obtained from Salt Melt Pyrolysis of Chitosan toward Supercapacitor and Oxygen Reduction Catalysts

壳聚糖盐熔体热解制备微孔氮掺杂碳用于超级电容器和氧还原催化剂

阅读:9
作者:Maria Krystyna Rybarczyk, Karolina Cysewska, Recep Yuksel, Marek Lieder

Abstract

The direct carbonization of low-cost and abundant chitosan biopolymer in the presence of salt eutectics leads to highly microporous, N-doped nanostructures. The microporous structure is easily manufactured using eutectic mixture (ZnCl2-KCl) and chitosan. Potassium ions here can act as an intercalating agent, leading to the formation of lamellar carbon sheets, whereas zinc chloride generates significant porosity. Here, we present an efficient synthetic way for microporous carbon nanostructures production with a total nitrogen content of 8.7%. Preliminary studies were performed to show the possibility of the use of such material as a catalyst for supercapacitor and ORR. The textural properties enhanced capacitance, which stem from improved accessibility of previously blocked or inactive pores in the carbon structure, leading to the conclusion that porogen salts and molten salt strategies produce materials with tailor-made morphologies. The synergistic effect of the eutectic salt is seen in controlled porous structures and pore size, and the micropores boosting adsorption ability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。