15-Deoxy-Δ-12, 14-prostaglandin J2 acts cooperatively with prednisolone to reduce TGF-β-induced pro-fibrotic pathways in human osteoarthritis fibroblasts

15-脱氧-Δ-12,14-前列腺素 J2 与泼尼松龙协同作用,减少人类骨关节炎成纤维细胞中 TGF-β 诱导的促纤维化途径

阅读:7
作者:Carlos Vaamonde-Garcia, Olivier Malaise, Edith Charlier, Céline Deroyer, Sophie Neuville, Philippe Gillet, William Kurth, Rosa Meijide-Failde, Michel G Malaise, Dominique de Seny0

Aims

Synovial fibrosis is a pathological process that is observed in several musculoskeletal disorders and characterized by the excessive deposition of extracellular matrix, as well as cell migration and proliferation. Despite the fact that glucocorticoids are widely employed in the treatment of rheumatic pathologies such as osteoarthritis (OA) and rheumatoid arthritis, the mechanisms by which glucocorticoids act in the joint and their impacts on pro-fibrotic pathways are still unclear. Materials: Human OA synovial fibroblasts were obtained from knee and hip joints. Cells were treated with prednisolone (1 mM) or transforming growth factor-beta 1 (TGF-β1) (10 ng/ml) for 1 and 7 days for quantification of RNA and protein expression (by real-time quantitative reverse transcription-PCR and western blot, respectively), 72 h for immunocytochemistry analysis, and 48 h for proliferation (by BrdU assay) and migration (by wound assay) studies. In addition, cells were preincubated with prednisolone and/or the peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist 15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) for 6 h before adding TGF-β1. pSmad1/5, pSmad2 and β-catenin levels were analyzed by Western blot. The activin receptor-like kinase-5 (ALK-5) inhibitor (SB-431542) was employed for the mechanistic assays.

Background/aims

Synovial fibrosis is a pathological process that is observed in several musculoskeletal disorders and characterized by the excessive deposition of extracellular matrix, as well as cell migration and proliferation. Despite the fact that glucocorticoids are widely employed in the treatment of rheumatic pathologies such as osteoarthritis (OA) and rheumatoid arthritis, the mechanisms by which glucocorticoids act in the joint and their impacts on pro-fibrotic pathways are still unclear. Materials: Human OA synovial fibroblasts were obtained from knee and hip joints. Cells were treated with prednisolone (1 mM) or transforming growth factor-beta 1 (TGF-β1) (10 ng/ml) for 1 and 7 days for quantification of RNA and protein expression (by real-time quantitative reverse transcription-PCR and western blot, respectively), 72 h for immunocytochemistry analysis, and 48 h for proliferation (by BrdU assay) and migration (by wound assay) studies. In addition, cells were preincubated with prednisolone and/or the peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist 15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) for 6 h before adding TGF-β1. pSmad1/5, pSmad2 and β-catenin levels were analyzed by Western blot. The activin receptor-like kinase-5 (ALK-5) inhibitor (SB-431542) was employed for the mechanistic assays.

Conclusions

Prednisolone, along with 15d-PGJ2, modulates pro-fibrotic pathways activated by TGF-β in synovial fibroblasts at least partially through the inhibition of ALK5/Smad2 signaling and subsequent β-catenin accumulation. These findings shed light on the potential therapeutic effects of glucocorticoids treatment combined with a PPAR-γ agonist against synovial fibrosis, although future studies are warranted to further evaluate this concern.

Results

Prednisolone showed a predominant anti-fibrotic impact on fibroblast-like synoviocytes as it attenuated the spontaneous and TGF-β-induced gene expression of pro-fibrotic markers. Prednisolone also reduced α-sma protein and type III collagen levels, as well as cell proliferation and migration after TGF-β stimulation. However, prednisolone did not downregulate the gene expression of all the pro-fibrotic markers tested and did not restore the reduced PPAR-γ levels after TGF-β stimulation. Interestingly, anti-fibrotic actions of the glucocorticoid were reinforced in the presence of the PPAR-γ agonist 15d-PGJ2. Combined pretreatment modulated Smad2/3 levels and, similar to the ALK-5 inhibitor, blocked β-catenin accumulation elicited by TGF-β. Conclusions: Prednisolone, along with 15d-PGJ2, modulates pro-fibrotic pathways activated by TGF-β in synovial fibroblasts at least partially through the inhibition of ALK5/Smad2 signaling and subsequent β-catenin accumulation. These findings shed light on the potential therapeutic effects of glucocorticoids treatment combined with a PPAR-γ agonist against synovial fibrosis, although future studies are warranted to further evaluate this concern.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。