Ionic association analysis of LiTDI, LiFSI and LiPF6 in EC/DMC for better Li-ion battery performances

EC/DMC 中 LiTDI、LiFSI 和 LiPF6 的离子缔合分析,以提高锂离子电池性能

阅读:4
作者:Christopher L Berhaut, Daniel Lemordant, Patrice Porion, Laure Timperman, Grégory Schmidt, Mériem Anouti

Abstract

New lithium salts such as lithium bis(fluorosulfonyl)imide (LiFSI) and lithium 4,5-dicyano-2-(trifluoromethyl)imidazole-1-ide (LiTDI) are now challenging lithium hexafluorophosphate (LiPF6), the most used electrolyte salt in commercial Li-ion batteries. Thus it is now important to establish a comparison of these electrolyte components in a standard solvent mixture of ethylene carbonate and dimethyl carbonate (EC/DMC: 50/50 wt%). With this aim, transport properties, such as the ionic conductivity, viscosity and 7Li self-diffusion coefficient have been deeply investigated. Moreover, as these properties are directly linked to the nature of the interionic interactions and ion solvation, a better understanding of the structural properties of electrolytes can be obtained. The Li salt concentration has been varied over the range of 0.1 mol L-1 to 2 mol L-1 at 25 °C and the working temperature from 20 °C to 80 °C at the fixed concentration of 1 mol L-1. Experimental results were used to investigate the temperature dependence of the salt ion-pair (IP) dissociation coefficient (α D) with the help of the Walden rule and the Nernst-Einstein equation. The lithium cation effective solute radius (r Li) has been determined using the Jones-Dole-Kaminsky equation coupled to the Einstein relation for the viscosity of hard spheres in solution and the Stokes-Einstein equation. From the variations of α D and rLi with the temperature, it is inferred that in EC/DMC LiFSI forms solvent-shared ion-pairs (SIP) and that, LiTDI and LiPF6 are likely to form solvent separated ion-pairs (S2IP) or a mixture of SIP and S2IP. From the temperature dependence of α D, thermodynamic parameters such as the standard Gibbs free energy, enthalpy and entropy for the ion-pair formation are obtained. Besides being in agreement with the information provided by the variations of α D and rLi, it is concluded that the ion-pair formation process is exergonic and endothermic for the three salts in EC/DMC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。