β-Sitosterol differentially regulates key metabolites for growth improvement and stress tolerance in rice plants during prolonged UV-B stress

β-谷甾醇在长期 UV-B 胁迫下差异调节水稻植株的关键代谢物以改善其生长并增强其抗逆性

阅读:10
作者:Raheel Shahzad, Mohamed Ewas, Putri Widyanti Harlina, Shahid Ullah Khan, Pan Zhenyuan, Xinhui Nie, Elsayed Nishawy

Background

Elevated ultraviolet-B (UV-B) radiation is potentially deleterious to many organisms specifically crop plants and has become a global challenge. Rice is an exceptionally important staple food which is grown worldwide, and many efforts have been done recently to improve rice varieties against UV-B stress. This current study aims to investigate the effects of exogenous application of β-sitosterol (βSito) on growth improvement and tolerance level of rice plants against prolonged UV-B stress. The physiological and metabolic responses were evaluated in rice plants not supplemented with βSito (Nβ) and those supplemented with βSito (Sβ).

Conclusion

These results provide useful data regarding the important role of βSito on growth maintenance and modulation of several metabolites associated with osmotic and redox adjustments during UV-B stress tolerance in rice plants. Importantly, βSito-regulated plasticity could further be explored specifically in relation to different environmental stresses in other economically useful crop plants.

Results

The Nβ and Sβ plants were grown under non-stress (ns) and under prolonged UV-B stress (uvs) conditions and termed as Nβns, Sβns and Nβuvs, Sβuvs, respectively. The application of βSito contributes positively under non-stress and specifically to UV-B stress in terms of improving numerous physiological parameters associated with growth and development such as shoot and root length, RWC, whole plant biomass, chlorophyll pigments, and photosynthetic-related parameters (Pn, Gs, Tr, WUEi, Fv/Fm, and NPQ) in Sβ compared with Nβ plants. Moreover, enhanced oxidative stress tolerance of Sβuvs vs. Nβuvs plants under stress was attributed to low levels of ROS and substantial trigger in activities of antioxidant enzymes (SOD, POD, CAT, and APX). Metabolic analysis was performed using GC-TOFMS, which revealed higher accumulation of several key metabolites including organic acids, sugars, amino acids, and others in Sβuvs vs. Nβuvs plants, which were mainly reduced in Nβ plants under stress vs. non-stress conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。