Effect of a pH-controlled co-precipitation process on rhodamine B adsorption of MnFe2O4 nanoparticles

pH 控制共沉淀过程对 MnFe2O4 纳米粒子吸附罗丹明 B 的影响

阅读:8
作者:Umaporn Lamdab, Khatcharin Wetchakun, Wiyong Kangwansupamonkon, Natda Wetchakun

Abstract

We investigated the effect of a pH-controlled co-precipitation process on the adsorption behavior of manganese ferrite (MnFe2O4) nanoparticles as well as their structural and magnetic properties. The pH of prepared MnFe2O4 nanoparticles is typically an important factor affecting the adsorption capacity of an adsorbent. In this study, MnFe2O4 nanoparticles were prepared using a co-precipitation method at four different pH values of 9.0, 9.5, 10.0, and 10.5. The adsorption behaviors on rhodamine B (RhB) by MnFe2O4 nanoparticles prepared at different pH values were investigated. It was found that, via a pH-controlled process, MnFe2O4 nanoparticles prepared at pH 10.5 showed the highest RhB removal efficiency. The results indicated that the large pore size and surface charge of MnFe2O4 nanoparticles improved the adsorption capacities for RhB. Kinetic data were fitted to a pseudo-second order kinetic model and revealed that equilibrium was reached within 60 min. The isotherm data showed that the Langmuir maximum adsorption capacity of the MnFe2O4 nanoparticles prepared at pH 10.5 for RhB was 9.30 mg g-1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。