Incidence of q statistics in rank distributions

秩分布中 q 统计量的发生率

阅读:6
作者:G Cigdem Yalcin, Alberto Robledo, Murray Gell-Mann

Abstract

We show that size-rank distributions with power-law decay (often only over a limited extent) observed in a vast number of instances in a widespread family of systems obey Tsallis statistics. The theoretical framework for these distributions is analogous to that of a nonlinear iterated map near a tangent bifurcation for which the Lyapunov exponent is negligible or vanishes. The relevant statistical-mechanical expressions associated with these distributions are derived from a maximum entropy principle with the use of two different constraints, and the resulting duality of entropy indexes is seen to portray physically relevant information. Whereas the value of the index α fixes the distribution's power-law exponent, that for the dual index 2 - α ensures the extensivity of the deformed entropy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。