RGD_PLGA Nanoparticles with Docetaxel: A Route for Improving Drug Efficiency and Reducing Toxicity in Breast Cancer Treatment

RGD_PLGA 纳米粒子与多西他赛:提高乳腺癌治疗药物疗效和降低毒性的途径

阅读:8
作者:Enza Di Gregorio, Chiara Romiti, Antonino Di Lorenzo, Federica Cavallo, Giuseppe Ferrauto, Laura Conti

Abstract

Breast cancer is the leading cause of cancer-related death in women. Although many therapeutic approaches are available, systemic chemotherapy remains the primary choice, especially for triple-negative and advanced breast cancers. Unfortunately, systemic chemotherapy causes serious side effects and requires high doses to achieve an effective concentration in the tumor. Thus, the use of nanosystems for drug delivery may overcome these limitations. Herein, we formulated Poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) containing Docetaxel, a fluorescent probe, and a magnetic resonance imaging (MRI) probe. The cyclic RGD tripeptide was linked to the PLGA surface to actively target αvβ3 integrins, which are overexpressed in breast cancer. PLGA-NPs were characterized using dynamic light scattering, fast field-cycling 1H-relaxometry, and 1H-nuclear magnetic resonance. Their therapeutic effects were assessed both in vitro in triple-negative and HER2+ breast cancer cells, and in vivo in murine models. In vivo MRI and inductively coupled plasma mass spectrometry of excised tumors revealed a stronger accumulation of PLGA-NPs in the RGD_PLGA group. Targeted PLGAs have improved therapeutic efficacy and strongly reduced cardiac side effects compared to free Docetaxel. In conclusion, RGD-PLGA is a promising system for breast cancer treatment, with positive outcome in terms of therapeutic efficiency and reduction in side effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。