KRT-232 and navitoclax enhance trametinib's anti-Cancer activity in non-small cell lung cancer patient-derived xenografts with KRAS mutations

KRT-232 和 navitoclax 增强曲美替尼在 KRAS 突变非小细胞肺癌患者异种移植中的抗癌活性

阅读:7
作者:Xiaoshan Zhang, Ran Zhang, Huiqin Chen, Li Wang, Chenghui Ren, Apar Pataer, Shuhong Wu, Qing H Meng, Min Jin Ha, Jeffrey Morris, Yuanxin Xi, Jing Wang, Jianhua Zhang, Don L Gibbons, John V Heymach, Funda Meric-Bernstam, John Minna, Stephen G Swisher, Jack A Roth, Bingliang Fang

Abstract

Activating mutations of the KRAS gene are one of the major genomic alterations associated with tumorigenesis of non-small cell lung cancer (NSCLC). Thus far, treatment of KRAS-mutant NSCLC remains an unmet medical need. We determined the in vivo treatment responses of 13 KRAS mutant and 14 KRAS wild type NSCLC patient-derived xenografts (PDXs) to agents that target known NSCLC vulnerabilities: the MEK inhibitor trametinib, the MDM2 inhibitor KRT-232, and the BCL-XL/BCL-2 inhibitor navitoclax. The results showed that the tumor regression rate after single agent therapy with KRT-232, trametinib and navitoclax was 11%, 10% and 0%, respectively. Combination therapies of trametinib plus KRT-232 and trametinib plus navitoclax led to improved partial response rates over single-agent activity in a subset of PDX models. Tumor regression was observed in 23% and 50% of PDXs after treatment with trametinib plus KRT-232 and trametinib plus navitoclax, respectively. The disease control rates in KRAS-mutant PDXs tested were 90%-100% after treatment with trametinib plus KRT-232 or plus navitoclax. A correlation analysis of treatment responses and genomic and proteomic biomarkers revealed that sensitivity to KRT-232 was significantly associated with TP53 wild-type or STK11 mutant genotypes (P<0.05). The levels of several proteins, including GSK3b, Nrf2, LKB1/pS334, and SMYD3, were significantly associated with sensitivity to trametinib plus navitoclax. Thus, the combination of trametinib plus KRT-232 or navitoclax resulted in improved efficacy compared with the agents alone in a subgroup of NSCLC PDX model with KRAS mutations. Expanded clinical trials of these targeted drug combinations in NSCLC are warranted.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。