Inhibition of protein kinase C catalytic activity by additional regions within the human protein kinase Calpha-regulatory domain lying outside of the pseudosubstrate sequence

人类蛋白激酶 Calpha 调节域内位于伪底物序列之外的附加区域对蛋白激酶 C 催化活性的抑制

阅读:5
作者:Angie F Kirwan, Ashley C Bibby, Thierry Mvilongo, Heimo Riedel, Thomas Burke, Sherri Z Millis, Amadeo M Parissenti

Abstract

The N-terminal pseudosubstrate site within the protein kinase Calpha (PKCalpha)-regulatory domain has long been regarded as the major determinant for autoinhibition of catalytic domain activity. Previously, we observed that the PKC-inhibitory capacity of the human PKCalpha-regulatory domain was only reduced partially on removal of the pseudosubstrate sequence [Parissenti, Kirwan, Kim, Colantonio and Schimmer (1998) J. Biol. Chem. 273, 8940-8945]. This finding suggested that one or more additional region(s) contributes to the inhibition of catalytic domain activity. To assess this hypothesis, we first examined the PKC-inhibitory capacity of a smaller fragment of the PKCalpha-regulatory domain consisting of the C1a, C1b and V2 regions [GST-Ralpha(39-177): this protein contained the full regulatory domain of human PKCalpha fused to glutathione S-transferase (GST), but lacked amino acids 1-38 (including the pseudosubstrate sequence) and amino acids 178-270 (including the C2 region)]. GST-Ralpha(39-177) significantly inhibited PKC in a phorbol-independent manner and could not bind the peptide substrate used in our assays. These results suggested that a region within C1/V2 directly inhibits catalytic domain activity. Providing further in vivo support for this hypothesis, we found that expression of N-terminally truncated pseudosubstrate-less bovine PKCalpha holoenzymes in yeast was capable of inhibiting cell growth in a phorbol-dependent manner. This suggested that additional autoinhibitory force(s) remained within the truncated holoenzymes that could be relieved by phorbol ester. Using tandem PCR-mediated mutagenesis, we observed that mutation of amino acids 33-86 within GST-Ralpha(39-177) dramatically reduced its PKC-inhibitory capacity when protamine was used as substrate. Mutagenesis of a broad range of sequences within C2 (amino acids 159-242) also significantly reduced PKC-inhibitory capacity. Taken together, these observations support strongly the existence of multiple regions within the PKCalpha-regulatory domain that play a direct role in the inhibition of catalytic domain activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。