Small Molecule Inhibition of Rab7 Impairs B Cell Class Switching and Plasma Cell Survival To Dampen the Autoantibody Response in Murine Lupus

Rab7 的小分子抑制会损害 B 细胞类别转换和浆细胞存活,从而抑制小鼠狼疮中的自身抗体反应

阅读:4
作者:Tonika Lam, Dennis V Kulp, Rui Wang, Zheng Lou, Julia Taylor, Carlos E Rivera, Hui Yan, Qi Zhang, Zhonghua Wang, Hong Zan, Dmitri N Ivanov, Guangming Zhong, Paolo Casali, Zhenming Xu

Abstract

IgG autoantibodies mediate pathology in systemic lupus patients and lupus-prone mice. In this study, we showed that the class-switched IgG autoantibody response in MRL/Faslpr/lpr and C57/Sle1Sle2Sle2 mice was blocked by the CID 1067700 compound, which specifically targeted Ras-related in brain 7 (Rab7), an endosome-localized small GTPase that was upregulated in activated human and mouse lupus B cells, leading to prevention of disease development and extension of lifespan. These were associated with decreased IgG-expressing B cells and plasma cells, but unchanged numbers and functions of myeloid cells and T cells. The Rab7 inhibitor suppressed T cell-dependent and T cell-independent Ab responses, but it did not affect T cell-mediated clearance of Chlamydia infection, consistent with a B cell-specific role of Rab7. Indeed, B cells and plasma cells were inherently sensitive to Rab7 gene knockout or Rab7 activity inhibition in class switching and survival, respectively, whereas proliferation/survival of B cells and generation of plasma cells were not affected. Impairment of NF-κB activation upon Rab7 inhibition, together with the rescue of B cell class switching and plasma cell survival by enforced NF-κB activation, indicated that Rab7 mediates these processes by promoting NF-κB activation, likely through signal transduction on intracellular membrane structures. Thus, a single Rab7-inhibiting small molecule can target two stages of B cell differentiation to dampen the pathogenic autoantibody response in lupus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。