Differential Effect of Mucosal NKp44+ Innate Lymphoid Cells and Δγ Cells on Simian Immunodeficiency Virus Infection Outcome in Rhesus Macaques

粘膜 NKp44+ 先天淋巴细胞和 Δγ 细胞对恒河猴免疫缺陷病毒感染结果的不同影响

阅读:6
作者:Mohammad Arif Rahman, Eun-Ju Ko, Gospel Enyindah-Asonye, Sabrina Helmold Hait, Christopher Hogge, Ruth Hunegnaw, David J Venzon, Tanya Hoang, Marjorie Robert-Guroff

Abstract

NK cells are essential for controlling viral infections. We investigated NK cell and innate lymphoid cell (ILC) dynamics and function in rhesus macaque rectal tissue and blood following mucosal priming with replicating adenovirus (Ad)-SIV recombinants, systemic boosting with SIV envelope protein, and subsequent repeated low-dose intravaginal SIV exposures. Mucosal memory-like NK and ILC subsets in rectal and vaginal tissues of chronically infected macaques were also evaluated. No differences in NK cell or ILC frequencies or cytokine production were seen between vaccinated and Ad-empty/alum controls, suggesting responses were due to the Ad-vector and alum vaccine components. Mucosal NKp44+ ILCs increased postvaccination and returned to prelevels postinfection. The vaccine regimen induced mucosal SIV-specific Ab, which mediated Ab-dependent cellular cytotoxicity and was correlated with mucosal NKp44+CD16+ ILCs. Postvaccination NKp44+ and NKp44+IL-17+ ILC frequencies were associated with delayed SIV acquisition and decreased viremia. In chronically SIV-infected animals, NKp44+ ILCs negatively correlated with viral load, further suggesting a protective effect, whereas, NKG2A- NKp44- double-negative ILCs positively correlated with viral load, indicating a pathogenic role. No such associations of circulating NK cells were seen. Δγ NK cells in mucosal tissues of chronically infected animals exhibited impaired cytokine production compared with non-Δγ NK cells but responded to anti-gp120 Ab and Gag peptides, whereas non-Δγ NK cells did not. Mucosal Δγ NKp44+ and Δγ DN cells were similarly associated with protection and disease progression, respectively. Thus, the data suggest NKp44+ ILCs and Δγ cells contribute to SIV infection outcomes. Vaccines that promote mucosal NKp44+ and suppress double-negative ILCs are likely desirable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。