Novel Poly(ionic liquid) Augmented Membranes for Unconventional Aqueous Phase Applications in Fractionation of Dyes and Sugar

新型聚(离子液体)增强膜在染料和糖分馏中的非常规水相应用

阅读:12
作者:Sandrina DePaz, Arijit Sengupta, Yu-Hsuan Chiao, Sumith Ranil Wickramasinghe

Abstract

Poly(ionic) liquid (PIL) augmented membranes were fabricated through self-polymerization of 2-vinyl pyridine and 4-vinyl pyridine followed by dopamine triggered polymerization and bridging with inert polyamide support. The resulting membranes acquired a positive surface charge with a high degree of hydrophilicity. Fourier transformed Infra-red (FTIR) and Energy dispersive X-ray (EDX) spectroscopic investigation revealed the successful augmentation of PIL surface layer, whereas surface morphology was investigated through scanning electron microscopy (SEM) imaging. This manuscript demonstrates pi electron-induced separation of dyes with the trend in permeability: Coomassie Brilliant Blue G (CBBHG) > Remazol Brilliant Blue R (RBBR) > Eichrome Black T (EBT) > Congo Red (CR). CBBG exhibited extended conjugation over large aromatic domain. RBBR and EBT were associated withtheelectron-donating -NH2 group and electron-withdrawing -NO2 group, respectively, hence pi electron density on aromatic ring varied. The steric repulsion between two pairs of ortho hydrogens (Hs) in biphenyl moieties of CR resulted in deviation of planarity and hence aromaticity leading to the lowest permeability. The sugar fractionation followed the trend: Galactose > Mannose > Fructose > Glucose > Xylose. More hydroxyl (-OH) groups in sugars and their conformational alignment in the same direction, exhibited more lone pair of electrons leading to more interaction with PIL and hence better permeability. Pentose showed poorer permeation than hexose, whereas aldose showed better permeation than ketose.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。