Single-dose MGTA-145/plerixafor leads to efficient mobilization and in vivo transduction of HSCs with thalassemia correction in mice

单剂量 MGTA-145/普乐沙福可有效动员和体内转导 HSC,并纠正小鼠的地中海贫血

阅读:5
作者:Chang Li, Kevin A Goncalves, Tamás Raskó, Amit Pande, Sucheol Gil, Zhinan Liu, Zsuzsanna Izsvák, Thalia Papayannopoulou, John C Davis, Hans-Peter Kiem, André Lieber

Abstract

We have developed an in vivo hemopoietic stem cell (HSC) gene therapy approach without the need for myelosuppressive conditioning and autologous HSC transplantation. It involves HSC mobilization and IV injection of a helper-dependent adenovirus HDAd5/35++ vector system. The current mobilization regimen consists of granulocyte colony-stimulating factor (G-CSF) injections over a 4-day period, followed by the administration of plerixafor/AMD3100. We tested a simpler, 2-hour, G-CSF-free mobilization regimen using truncated GRO-β (MGTA-145; a CXCR2 agonist) and plerixafor in the context of in vivo HSC transduction in mice. The MGTA-145+plerixafor combination resulted in robust mobilization of HSCs. Importantly, compared with G-CSF+plerixafor, MGTA-145+plerixafor led to significantly less leukocytosis and no elevation of serum interleukin-6 levels and was thus likely to be less toxic. With both mobilization regimens, after in vivo selection with O6-benzylguanine (O6BG)/BCNU, stable GFP marking was achieved in >90% of peripheral blood mononuclear cells. Genome-wide analysis showed random, multiclonal vector integration. In vivo HSC transduction after mobilization with MGTA-145+plerixafor in a mouse model for thalassemia resulted in >95% human γ-globin+ erythrocytes at a level of 36% of mouse β-globin. Phenotypic analyses showed a complete correction of thalassemia. The γ-globin marking percentage and level were maintained in secondary recipients, further demonstrating that MGTA145+plerixafor mobilizes long-term repopulating HSCs. Our study indicates that brief exposure to MGTA-145+plerixafor may be advantageous as a mobilization regimen for in vivo HSC gene therapy applications across diseases, including thalassemia and sickle cell disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。