Superoxide is the critical driver of DOPAL autoxidation, lysyl adduct formation, and crosslinking of α-synuclein

超氧化物是 DOPAL 自氧化、赖氨酸加合物形成和 α-突触核蛋白交联的关键驱动因素

阅读:8
作者:Jon W Werner-Allen, Rodney L Levine, Ad Bax

Abstract

Parkinson's disease has long been associated with redox imbalance and oxidative stress in dopaminergic neurons. The catecholaldehyde hypothesis proposes that 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate product of dopamine catabolism, is a central nexus in a network of pathways leading to disease-state neurodegeneration, owing to its toxicity and potent ability to oligomerize α-synuclein, the main component of protein aggregates in Lewy bodies. In this work we examine the connection between reactive oxygen species and DOPAL autoxidation. We show that superoxide propagates a chain reaction oxidation, and that this reaction is dramatically inhibited by superoxide dismutase. Moreover, superoxide dismutase prevents DOPAL from forming dicatechol pyrrole adducts with lysine and from covalently crosslinking α-synuclein. Given that superoxide is a major radical byproduct of impaired cellular respiration, our results provide a possible mechanistic link between mitochondrial dysfunction and synuclein aggregation in dopaminergic neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。