Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells

迁移细胞中粘连形成和分解过程中 α5 整合素、桩蛋白和 α-辅肌动蛋白的差异动力学

阅读:6
作者:C M Laukaitis, D J Webb, K Donais, A F Horwitz

Abstract

To investigate the mechanisms by which adhesions form and disperse in migrating cells, we expressed alpha 5 integrin, alpha-actinin, and paxillin as green fluorescent protein (GFP) fusions. All localized with their endogenous counterparts and did not perturb migration when expressed at moderate levels. alpha 5-GFP also rescued the adhesive defects in CHO B2 cells, which are alpha 5 integrin deficient. In ruffling cells, alpha 5-GFP and alpha-actinin--GFP localized prominently at the leading edge in membrane protrusions. Of the three GFP fusion proteins that we examined, paxillin was the first component to appear visibly organized in protrusive regions of the cell. When a new protrusion formed, the paxillin appeared to remodel from older to newer adhesions at the leading edge. alpha-Actinin subsequently entered adhesions, which translocated toward the cell center, and inhibited paxillin turnover. The new adhesions formed from small foci of alpha-actinin--GFP and paxillin-GFP, which grew in size. Subsequently, alpha 5 integrin entered the adhesions to form visible complexes, which served to stabilize the adhesions. alpha 5-GFP also resided in endocytic vesicles that emanated from the leading edge of protrusions. Integrin vesicles at the cell rear moved toward the cell body. As cells migrated, alpha 5 vesicles also moved from a perinuclear region to the base of the lamellipodium. The alpha 5 vesicles colocalized with transferrin receptor and FM 4-64 dye. After adhesions broke down in the rear, alpha 5-GFP was found in fibrous structures behind the cell, whereas alpha-actinin--GFP and paxillin-GFP moved up the lateral edge of retracting cells as organized structures and then dissipated.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。