Investigating the anti-cancer potential of sulfatase 1 and its underlying mechanism in non-small cell lung cancer

研究硫酸酯酶1在非小细胞肺癌中的抗癌潜力及其潜在机制

阅读:5
作者:Bingling Zhang, Daping Luo, Lan Xiang, Jun Chen, Ting Fang

Conclusion

SULF1 knockdown inhibits the proliferation, migration, invasion, and EMT of NSCLC cells by inactivating EGFR/MAPK pathway.

Material and methods

Difference in SULF1 expression level between tumors and normal lung tissues was analyzed through bioinformatics and clinical sampling, and the effects of SULF1 expression on prognosis were investigated through Kaplan-Meier analysis. SULF1 level in NSCLC cells was modulated through small interfering ribonucleic acid interference. NSC228155, which is an epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) signaling pathway agonist, was for handling NSCLC cells. SULF1 expression level was tested through quantitative reverse transcriptase real-time polymerase chain reaction. Cell proliferation, migration, and invasion were evaluated with cell counting kit-8, 5-ethynyl-2-deoxyuridine, and transwell assays, and the levels of epithelial-to-mesenchymal transition (EMT)- and EGFR/MAPK pathway-related proteins were detected through Western blot.

Methods

Difference in SULF1 expression level between tumors and normal lung tissues was analyzed through bioinformatics and clinical sampling, and the effects of SULF1 expression on prognosis were investigated through Kaplan-Meier analysis. SULF1 level in NSCLC cells was modulated through small interfering ribonucleic acid interference. NSC228155, which is an epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) signaling pathway agonist, was for handling NSCLC cells. SULF1 expression level was tested through quantitative reverse transcriptase real-time polymerase chain reaction. Cell proliferation, migration, and invasion were evaluated with cell counting kit-8, 5-ethynyl-2-deoxyuridine, and transwell assays, and the levels of epithelial-to-mesenchymal transition (EMT)- and EGFR/MAPK pathway-related proteins were detected through Western blot.

Objective

Patients with non-small cell lung cancer (NSCLC) have poor prognoses. Sulfatase 1 (SULF1) is an extracellular neutral sulfatase and is involved in multiple physiological processes. Hence, this study investigated the function and possible mechanisms of SULF1 in NSCLC. Material and

Results

Bioinformatics and clinical samples showed that NSCLC tumor tissues had elevated SULF1 expression levels relative to those of normal tissues (P < 0.05). Patients with NSCLC and high SULF1 expression levels experienced poorer prognosis than those of low SULF1 expression levels (P < 0.05). SULF1 knockdown repressed the malignant biological behavior, including proliferation, migration, and invasion, of the NSCLC cells (P < 0.05). Mechanistically, SULF1 knockdown augmented E-cadherin level and abated N-cadherin and vimentin protein levels (P < 0.05). These results confirmed that EMT was inhibited. In addition, the knockdown of SULF1 reduced the phosphorylation of EGFR, extracellular signal-regulated kinase, p38 MAPK and c-Jun N-terminal kinase, and NSC228155 partially reversed these changes, which were affected by SULF1 knockdown. Meanwhile, NSC228155 partially reversed the inhibition of EMT, migration, and invasion affected by SULF1 knockdown.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。