Green Nanoarchitectonics of Silver Nanoparticles for Antimicrobial Activity Against Resistant Pathogens

银纳米粒子的绿色纳米结构对抗耐药性病原体的抗菌活性

阅读:6
作者:Gabriela Pereira Chuy, Pâmela Cristine Ladwig Muraro, Altevir Rossato Viana, Giovani Pavoski, Denise Crocce Romano Espinosa, Bruno Stefanello Vizzotto, William Leonardo da Silva

Abstract

Antimicrobial resistance represents a serious concern to public health, being responsible for hospital infections, affecting mainly immunosuppressed patients. Thus, nanotechnology appears as an alternative to solve this problem, through the application of metallic nanoparticles with antimicrobial activity. The present work aims to synthesize and characterize AgNPs from Klebsiella pneumoniae (AgNPs-KP) and Aloe vera extract (AgNPs-AV), evaluating the antimicrobial activity against Klebsiella pneumoniae carbapenemase (KpC) and the cytotoxicity in the L929 cell line. AgNPs were prepared by the biosynthetic method using Klebsiella pneumoniae and were characterized by XRD, FTIR and SEM-EDS. Antimicrobial activity was tested using the MIC and MBC. The cytotoxicity was evaluated by the MTT method and neutral red. The production of ROS and nitrogen RNS tests were performed in the L929 cell line. Thus, it was possible to confirm the production of AgNPs-KP, through morphological, structural and elemental analysis. AgNPs from Klebsiella pneumoniae had potent antimicrobial activity in low concentration against antimicrobial resistant pathogens with MIC 9.76 µg mL-1 and MBC 9.06 µg mL-1. Moreover, AgNPs-KP in concentrations of 10, 30 and 100 µg mL-1 did not show cytotoxic properties for the L929 fibroblast, where only the cytotoxic effect was observed in high concentrations (300 µg mL-1). AgNPs-KP did not produce ROS about the analyzed concentrations and RNS production was only in the highest concentration of 3000 µg mL-1. Therefore, AgNPs biosynthesized by Klebsiella pneumoniae have potential medical applicability as a promising antimicrobial agent, using a simple and low-cost method, correlating nanomedicine as nanostructured materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。