Superior Expansion and Cytotoxicity of Human Primary NK and CAR-NK Cells from Various Sources via Enriched Metabolic Pathways

通过丰富的代谢途径,来自不同来源的人类原代 NK 细胞和 CAR-NK 细胞具有优异的扩增和细胞毒性

阅读:8
作者:Yan Yang, Saiaditya Badeti, Hsiang-Chi Tseng, Minh Tuyet Ma, Ting Liu, Jie-Gen Jiang, Chen Liu, Dongfang Liu

Abstract

Clinical success of chimeric antigen receptor (CAR) T cell immunotherapy requires the engineering of autologous T cells, which limits the broader implementation of CAR cell therapy. The development of allogeneic and universal cell products will significantly broaden their application and reduce costs. Allogeneic natural killer (NK) cells can be used for universal CAR immunotherapy. Here, we develop an alternative approach for the rapid expansion of primary NK and CAR-NK cells with superior expansion capability and in vivo cytotoxicity from various sources (including peripheral blood, cord blood, and tumor tissue). We apply a human B-lymphoblastoid cell-line 721.221 (hereinafter, 221)-based artificial feeder cell system with membrane-bound interleukin 21 (mIL-21) to propagate NK and CAR-NK cells. The expansion capability, purity, and cytotoxicity of NK cells expanded with 221-mIL-21 feeder cells are superior to that of conventional K562-mIL-21 feeder cells. RNA sequencing (RNA-seq) data show that 221-mIL-21 feeder cell-expanded NK cells display a less differentiated, non-exhausted, limited fratricidal, memory-like phenotype correlated with enriched metabolic pathways, which explains underlying mechanisms. Thus, "off-the-shelf" NK and CAR-NK cells with superior functionalities and expansion using a genetically modified 221-mIL-21 feeder cell expansion system will greatly support clinical use of NK immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。