Glial fibrillary acidic protein is elevated in the lysosomal storage disease classical late-infantile neuronal ceroid lipofuscinosis, but is not a component of the storage material

胶质纤维酸性蛋白在溶酶体贮积症经典晚期婴儿神经元蜡样脂褐素沉积症中升高,但不是储存物质的组成部分

阅读:6
作者:Su Xu, David E Sleat, Michel Jadot, Peter Lobel

Abstract

Classical late-infantile neuronal ceroid lipofuscinosis (LINCL) is a fatal neurodegenerative disease of children caused by mutations in TPP1, the gene encoding the lysosomal protease tripeptidyl peptidase 1. LINCL is characterized by lysosomal accumulation of storage material of which only a single protein component, subunit c of mitochondrial ATP synthase, has been well established to date. Identification of other protein constituents of the storage material could provide useful insights into the pathophysiology of disease and the natural substrates for TPP1. We have therefore initiated a proteomic analysis of storage material in brain from a LINCL mouse model. One protein, GFAP (glial fibrillary acidic protein), was found to be elevated in the LINCL mice compared with normal controls in both isolated storage bodies and a lysosome-enriched subcellular fraction that contains storage material. To determine whether GFAP accumulates within the lysosome in LINCL, we examined its intracellular distribution using subcellular fractionation and morphological methods. These experiments demonstrate that GFAP is not a component of the storage material in LINCL, suggesting that reports of GFAP storage in other NCLs may need to be re-examined. A number of other proteins were elevated in the storage material and/or lysosome-enriched fraction from the LINCL mice, but it remains unclear whether these proteins are true constituents of the storage material or, like GFAP, whether they associate with this material upon purification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。