Ca2+ release from the endoplasmic reticulum of NY-ESO-1-specific T cells is modulated by the affinity of TCR and by the use of the CD8 coreceptor

NY-ESO-1 特异性 T 细胞内质网的 Ca2+ 释放受 TCR 亲和力和 CD8 辅助受体的调节

阅读:11
作者:Ji-Li Chen #, Anthony J Morgan #, Guillaume Stewart-Jones, Dawn Shepherd, Giovanna Bossi, Linda Wooldridge, Sarah L Hutchinson, Andrew K Sewell, Gillian M Griffiths, P Anton van der Merwe, E Yvonne Jones, Antony Galione, Vincenzo Cerundolo

Abstract

Although several cancer immunotherapy strategies are based on the use of analog peptides and on the modulation of the TCR affinity of adoptively transferred T cells, it remains unclear whether tumor-specific T cell activation by strong and weak TCR stimuli evoke different Ca(2+) signatures from the Ca(2+) intracellular stores and whether the amplitude of Ca(2+) release from the endoplasmic reticulum (ER) can be further modulated by coreceptor binding to peptide/MHC. In this study, we combined functional, structural, and kinetic measurements to correlate the intensity of Ca(2+) signals triggered by the stimulation of the 1G4 T cell clone specific to the tumor epitope NY-ESO-1(157-165). Two analogs of the NY-ESO-1(157-165) peptide, having similar affinity to HLA-A2 molecules, but a 6-fold difference in binding affinity for the 1G4 TCR, resulted in different Ca(2+) signals and T cell activation. 1G4 stimulation by the stronger stimulus emptied the ER of stored Ca(2+), even in the absence of CD8 binding, resulting in sustained Ca(2+) influx. In contrast, the weaker stimulus induced only partial emptying of stored Ca(2+), resulting in significantly diminished and oscillatory Ca(2+) signals, which were enhanced by CD8 binding. Our data define the range of TCR/peptide MHC affinities required to induce depletion of Ca(2+) from intracellular stores and provide insights into the ability of T cells to tailor the use of the CD8 coreceptor to enhance Ca(2+) release from the ER. This, in turn, modulates Ca(2+) influx from the extracellular environment, ultimately controlling T cell activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。