Ropivacaine suppresses the progression of renal cell carcinoma through regulating the lncRNA RMRP/EZH2/CCDC65 axis

罗哌卡因通过调控lncRNA RMRP/EZH2/CCDC65轴抑制肾细胞癌进展

阅读:9
作者:Yingfen Xiong, Xiaolan Zheng, Huangying Deng

Background

Renal cell carcinoma (RCC) is a common malignancy. Local anesthetics were displayed powerful effects against various cancers. This study aims to probe the functions and molecular mechanism of ropivacaine in RCC.

Conclusion

In sum up, our work revealed that ropivacaine suppressed capacities of RCC cell viability, migration and invasion through modulating the RMRP/EZH2/CCDC65 axis, which laid the experimental foundation of ropivacaine for clinical application in the future.

Methods

Different concentrations of ropivacaine were performed to administrate RCC cells including 786-O and Caki-1 cells. Cell viability and cell apoptosis were examined using CCK-8 and flow cytometry, respectively. Cell migration and invasion were determined by transwell assay. RMRP and CCDC65 expression was firstly predicted using TCGA dataset and further validated in RCC cells using qRT-PCR and western blot. The interactions among RMRP, EZH2 and CCDC65 were verified by RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays.

Results

Ropivacaine effectively suppressed RCC cell viability, migration and invasion and enhanced cell apoptosis rate. Aberrantly elevated RMRP expression in RCC tissues was predicted by TCGA database. Interestingly, overexpressed RMRP observed in RCC cells could be also blocked upon the administration of ropivacaine. Likewise, RMRP knockdown further strengthened ropivacaine-mediated tumor suppressive effects on RCC cells. In terms of mechanism, RMRP directly interacted with EZH2, thereby modulating the histone methylation of CCDC65 to silence its expression. Moreover, ropivacaine inhibited tumor growth in mice bearing RCC tumor through regulating RMRP/EZH2/CCDC65 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。