RNA interference-mediated simultaneous down-regulation of urokinase-type plasminogen activator receptor and cathepsin B induces caspase-8-mediated apoptosis in SNB19 human glioma cells

RNA干扰介导尿激酶型纤溶酶原激活剂受体和组织蛋白酶B同时下调诱导SNB19人胶质瘤细胞中caspase-8介导的细胞凋亡

阅读:5
作者:Christopher S Gondi, Neelima Kandhukuri, Shakuntala Kondraganti, Meena Gujrati, William C Olivero, Dzung H Dinh, Jasti S Rao

Abstract

The invasive character of gliomas depends on proteolytic cleavage of the surrounding extracellular matrix. Cathepsin B and urokinase-type plasminogen activator receptor (uPAR) together are known to be overexpressed in gliomas and, as such, are attractive targets for gene therapy. In the present study, we used plasmid constructs to induce the RNA interference (RNAi)-mediated down-regulation of uPAR and cathepsin B in SNB19 human glioma cells. We observed that the simultaneous down-regulation of uPAR and cathepsin B induces the up-regulation of proapoptotic genes and initiates a collapse in mitochondrial Deltapsi. Cathepsin B and uPAR down-regulated cells showed increases in the expression of activated caspase-8 and DFF40/caspase-activated DNase. Nuclear translocation of AIF and Fas ligand translocation to the cell membrane were also observed. Ki67 and X-linked inhibitor of apoptosis protein levels decreased, thereby indicating apoptosis. These results suggest the involvement of uPAR-cathepsin B complex on the cell surface and its role in maintaining the viability of SNB19 glioma cells. In conclusion, RNAi-mediated down-regulation of uPAR and cathepsin B initiates a partial extrinsic apoptotic cascade accompanied by the nuclear translocation of AIF. Our study shows the potential of RNAi-mediated down-regulation of uPAR and cathepsin B in developing new therapeutics for gliomas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。