Electrochemical dechlorination of trichloroethylene in the presence of natural organic matter, metal ions and nitrates in a simulated karst media

在模拟喀斯特介质中天然有机物、金属离子和硝酸盐存在下三氯乙烯的电化学脱氯

阅读:6
作者:Noushin Fallahpour, Xuhui Mao, Ljiljana Rajic, Songhu Yuan, Akram N Alshawabkeh

Abstract

A small-scale flow-through limestone column was used to evaluate the effect of common coexisting organic and inorganic compounds on the electrochemical dechlorination of trichloroethylene (TCE) in karst media. Iron anode was used to produce ferrous ions and promote reducing conditions in the column. The reduction of TCE under 90 mA current, 1 mL min-1 flow rate, and 1 mg L-1 initial TCE concentration, was inhibited in the presence of humic acids due to competition for direct electron transfer and/or reaction with atomic hydrogen produced at the cathode surface by water electrolysis. Similarly, presence of 10 mg L-1 chromate decreased TCE reduction rate to 53%. The hexavalent chromium was completely reduced to trivalent chromium due to the ferrous species produced from iron anode. Presence of 5 mg L-1 selenate decreased the removal of TCE by 10%. Chromium and selenate complexation with dissolved iron results in formation of aggregates, which cover the electrodes surface and reduce TCE dechlorination rate. Presence of 40 mg L-1 nitrates caused reductive transformation of TCE up to 80%. Therefore, TCE removal is influenced by the presence of other contaminants that are present as a mixture in groundwater in the following order: humic acid, chromate, selenate, and nitrate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。