Pharmaceutical Induction of PGC-1 α Promotes Retinal Pigment Epithelial Cell Metabolism and Protects against Oxidative Damage

药物诱导PGC-1α促进视网膜色素上皮细胞代谢并防止氧化损伤

阅读:6
作者:Sangeeta Satish, Hannah Philipose, Mariana Aparecida Brunini Rosales, Magali Saint-Geniez

Abstract

Retinal pigment epithelium (RPE) dysfunction due to accumulation of reactive oxygen species and oxidative damage is a key event in the development of age-related macular degeneration (AMD). Here, we examine the therapeutic potential of ZLN005, a selective PGC-1α transcriptional regulator, in protecting RPE from cytotoxic oxidative damage. Gene expression analysis on ARPE-19 cells treated with ZLN005 shows robust upregulation of PGC-1α and its associated transcription factors, antioxidant enzymes, and mitochondrial genes. Energetic profiling shows that ZLN005 treatment enhances RPE mitochondrial function by increasing basal and maximal respiration rates, and spare respiratory capacity. In addition, ZLN005 robustly protects ARPE-19 cells from cell death caused by H2O2, ox-LDL, and NaIO3 without exhibiting any cytotoxicity under basal conditions. ZLN005 protection against H2O2-mediated cell death was lost in PGC-1α-silenced cells. Our data indicates that ZLN005 efficiently protects RPE cells from oxidative damage through selective induction of PGC-1α and its target antioxidant enzymes. ZLN005 may serve as a novel therapeutic agent for retinal diseases associated with RPE dystrophies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。