Diversity in Cortical Thymic Epithelial Cells Occurs through Loss of a Foxn1-Dependent Gene Signature Driven by Stage-Specific Thymocyte Cross-Talk

皮质胸腺上皮细胞的多样性是由于阶段特异性胸腺细胞串扰驱动的 Foxn1 依赖性基因特征的丢失而发生的

阅读:8
作者:Andrea J White, Sonia M Parnell, Adam Handel, Stefano Maio, Andrea Bacon, Emilie J Cosway, Beth Lucas, Kieran D James, Jennifer E Cowan, William E Jenkinson, Georg A Hollander, Graham Anderson

Abstract

In the thymus, cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells support αβT cell development from lymphoid progenitors. For cTECs, expression of a specialized gene signature that includes Cxcl12, Dll4, and Psmb11 enables the cortex to support T lineage commitment and the generation and selection of CD4+CD8+ thymocytes. Although the importance of cTECs in T cell development is well defined, mechanisms that shape the cTEC compartment and regulate its functional specialization are unclear. Using a Cxcl12DsRed reporter mouse model, we show that changes in Cxcl12 expression reveal a developmentally regulated program of cTEC heterogeneity. Although cTECs are uniformly Cxcl12DsRed+ during neonatal stages, progression through postnatal life triggers the appearance of Cxcl12DsRed- cTECs that continue to reside in the cortex alongside their Cxcl12DsRed+ counterparts. This appearance of Cxcl12DsRed- cTECs is controlled by maturation of CD4-CD8-, but not CD4+CD8+, thymocytes, demonstrating that stage-specific thymocyte cross-talk controls cTEC heterogeneity. Importantly, although fate-mapping experiments show both Cxcl12DsRed+ and Cxcl12DsRed- cTECs share a common Foxn1+ cell origin, RNA sequencing analysis shows Cxcl12DsRed- cTECs no longer express Foxn1, which results in loss of the FOXN1-dependent cTEC gene signature and may explain the reduced capacity of Cxcl12DsRed- cTECs for thymocyte interactions. In summary, our study shows that shaping of the cTEC compartment during the life course occurs via stage-specific thymocyte cross-talk, which drives loss of Foxn1 expression and its key target genes, which may then determine the functional competence of the thymic cortex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。