Non-coding RNA NEAT1/miR-214-3p contribute to doxorubicin resistance of urothelial bladder cancer preliminary through the Wnt/β-catenin pathway

非编码RNA NEAT1/miR-214-3p初步通过Wnt/β-catenin通路促进尿路上皮膀胱癌对阿霉素的耐药性。

阅读:3
作者:Yan Guo ,Hui Zhang ,Dalong Xie ,Xuanhao Hu ,Rongbo Song ,Li Zhu

Abstract

Background: Urothelial bladder cancer (UBC) is one of the most lethal urological malignancies in the world. Patients with UBC are routinely given chemotherapy which results in a median survival of 12-15 months. Nuclear-enriched abundant transcript 1 (NEAT1) functions as an oncogene and could be used as a therapeutic target for human UBC. However, the involvement of NEAT1 in doxorubicin (DOX) resistance of UBC has been poorly demonstrated. Methods: Quantitative Real-time PCR (qRT-PCR) was used to detect the expression levels of NEAT1 and miR-214-3p in UBC tissues and cells. Bioinformatics prediction, RNA pull-down and qRT-PCR were used to assay the regulation manner of NEAT1 and miR-214-3p. Loss/gain function of NEAT1 and miR-214-3p together with western blot, drug resistance assay and flow cytometry were used to explore the influence of NEAT1 in DOX resistance was correlative with miR-214-3p. Finally, luciferase assay system was applied to determine the Wnt/β-catenin signal activity. Results: NEAT1 was upregulated and miR-214-3p was downregulated in DOX-resistant UBC tissues and cells. NEAT1 knockdown inhibited J82 and T24 cells to DOX chemosensitivity by negatively regulating miR-214-3p expression. NEAT1/miR-214-3p contributed to DOX resistance of UBC preliminary through the Wnt/β-catenin pathway. Conclusion: NEAT1 contributed to DOX resistance of UBC through the Wnt/β-catenin pathway partly by negatively regulating miR-214-3p expression. Our findings will provide a promising ncRNA targeted therapeutic strategy for UBC with DOX resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。