Ammonium Impacts Methane Oxidation and Methanotrophic Community in Freshwater Sediment

氨影响淡水沉积物中的甲烷氧化和甲烷营养菌群落

阅读:5
作者:Yuyin Yang, Tianli Tong, Jianfei Chen, Yong Liu, Shuguang Xie

Abstract

Lacustrine ecosystems are regarded as one of the important natural sources of greenhouse gas methane. Aerobic methane oxidation, carried out by methane-oxidizing bacteria, is a key process regulating methane emission. And ammonium is believed to greatly influence aerobic methane oxidation activity. To date, disagreement exists in the threshold of ammonium effect. Moreover, knowledge about how aerobic methanotrophic community composition and functional gene transcription respond to ammonium is still lacking. In the present study, microcosms with freshwater lake sediment were constructed to explore the effect of ammonium level on aerobic methanotrophs. Methane oxidation potential, and the density, diversity and composition of pmoA gene and its transcripts were examined during 2-week incubation. A negative impact of ammonium on aerobic methane oxidation potential and a positive impact on pmoA gene density were observed only at a very high level of ammonium. However, pmoA gene transcription increased notably at all ammonium levels. The composition of functional pmoA gene and transcripts were also influenced by ammonium. But a great shift was only observed in pmoA transcripts at the highest ammonium level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。