Cysteine-674 oxidation and degradation of sarcoplasmic reticulum Ca(2+) ATPase in diabetic pig aorta

糖尿病猪主动脉半胱氨酸-674氧化及肌浆网Ca(2+)ATPase降解

阅读:6
作者:Jia Ying, Victor Sharov, Shanqin Xu, Bingbing Jiang, Ross Gerrity, Christian Schöneich, Richard A Cohen

Abstract

The sarcoplasmic reticulum Ca2+ ATPase (SERCA) is redox-regulated by posttranslational thiol modifications of cysteine-674 to regulate smooth muscle relaxation and migration. To detect oxidation of cysteine-674 that irreversibly prevents redox regulation, a polyclonal, sequence-specific antibody was developed toward a peptide containing cysteine-674 sulfonic acid. The antibody stained intact 110-kDa SERCA in pig cardiac SR that was oxidized in vitro by peroxynitrite in a sequence-specific manner, and histochemically stained atherosclerotic pig and rabbit aorta. Surprisingly, immunoblots of the pig aorta failed to stain intact 110-kDa SERCA protein, but rather, higher molecular mass aggregates and lower molecular mass bands. Of the latter bands at 70 and 60 kDa, the largest were observed in diabetic, hyperlipidemic pigs, and coincided with the most positive histochemical staining. The 70- and 60-kDa molecular mass bands also coincided with the majority of the protein detected by a monoclonal total anti-SERCA antibody, which detected the intact 110-kDa protein in normal pigs. Mass spectrometry identified SERCA in all the major bands detected by the sulfonic acid antibody as well as the oxidation of cysteine-674 in the 70-kDa band. These studies demonstrate a sequence-specific antibody that detects partial degradation products of SERCA, which represent the majority of the protein in some diabetic hypercholesterolemic pig aortae. In addition, the results suggest an association between irreversible oxidation of SERCA and its degradation, and that an important portion of the oxidized protein in tissue samples may be partially degraded.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。