MicroRNAs in bovine adipogenesis: genomic context, expression and function

牛脂肪生成中的微小RNA:基因组背景、表达和功能

阅读:5
作者:Josue Moura Romao, Weiwu Jin, Maolong He, Tim McAllister, Le Luo Guan

Background

MicroRNAs (miRNAs) are small non-coding RNAs found to regulate several biological processes including adipogenesis. Understanding adipose tissue regulation is critical for beef cattle as fat is an important determinant of beef quality and nutrient value. This study analyzed the association between genomic context characteristics of miRNAs with their expression and function in bovine adipose tissue. Twenty-four subcutaneous adipose tissue biopsies were obtained from eight British-continental crossbred steers at 3 different time points. Total RNA was extracted and miRNAs were profiled using a miRNA microarray with expression further validated by qRT-PCR.

Conclusions

These findings improve our understanding on the behavior of miRNAs in the regulation of bovine adipogenesis and fat metabolism as it reveals that miRNA expression patterns and functions are associated with miRNA genomic location, organization and conservation.

Results

A total of 224 miRNAs were detected of which 155 were expressed in all steers (n = 8), and defined as the core miRNAs of bovine subcutaneous adipose tissue. Core adipose miRNAs varied in terms of genomic location (59.5% intergenic, 38.7% intronic, 1.2% exonic, and 0.6% mirtron), organization (55.5% non-clustered and 44.5% clustered), and conservation (49% highly conserved, 14% conserved and 37% poorly conserved). Clustered miRNAs and highly conserved miRNAs were more highly expressed (p < 0.05) and had more predicted targets than non-clustered or less conserved miRNAs (p < 0.001). A total of 34 miRNAs were coordinately expressed, being part of six identified relevant networks. Two intronic miRNAs (miR-33a and miR-1281) were confirmed to have coordinated expression with their host genes, transcriptional factor SREBF2 and EP300 (a transcriptional co-activator of transcriptional factor C/EBPα), respectively which are involved in lipid metabolism, suggesting these miRNAs may also play a role in regulation of bovine lipid metabolism/adipogenesis. Furthermore, a total of 17 bovine specific miRNAs were predicted to be involved in the regulation of energy balance in adipose tissue. Conclusions: These findings improve our understanding on the behavior of miRNAs in the regulation of bovine adipogenesis and fat metabolism as it reveals that miRNA expression patterns and functions are associated with miRNA genomic location, organization and conservation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。