The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide

化学计量对热分解氧化镍的结构、热学和电子性质的影响

阅读:6
作者:P Dubey, Netram Kaurav, Rupesh S Devan, G S Okram, Y K Kuo

Abstract

A thermal decomposition route with different sintering temperatures was employed to prepare non-stoichiometric nickel oxide (Ni1-δ O) from Ni(NO3)2·6H2O as a precursor. The non-stoichiometry of samples was then studied chemically by iodometric titration, wherein the concentration of Ni3+ determined by chemical analysis, which is increasing with increasing excess of oxygen or reducing the sintering temperature from the stoichiometric NiO; it decreases as sintering temperature increases. These results were corroborated by the excess oxygen obtained from the thermo-gravimetric analysis (TGA). X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) techniques indicate the crystalline nature, Ni-O bond vibrations and cubic structural phase of Ni1-δ O. The change in oxidation state of nickel from Ni3+ to Ni2+ were seen in the X-ray photoelectron spectroscopy (XPS) analysis and found to be completely saturated in Ni2+ as the sintering temperature reaches 700 °C. This analysis accounts for the implication of non-stoichiometric on the magnetization data, which indicate a shift in antiferromagnetic ordering temperature (T N) due to associated increased magnetic disorder. A sharp transition in the specific heat capacity at T N and a shift towards lower temperature are also evidenced with respect to the non-stoichiometry of the system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。