Hyperbaric oxygen potentiates diabetic wound healing by promoting fibroblast cell proliferation and endothelial cell angiogenesis

高压氧通过促进成纤维细胞增殖和内皮细胞血管生成促进糖尿病伤口愈合

阅读:6
作者:Xu Huang, Pengfei Liang, Bimei Jiang, Pihong Zhang, Wenchang Yu, Mengting Duan, Le Guo, Xu Cui, Mitao Huang, Xiaoyuan Huang

Background

Diabetic foot ulcer (DFU), one of the diabetic complications, brings high burden to diabetic patients. Hyperbaric oxygen therapy (HBOT) has been proven to be an effective clinical method for the treatment of DFU. However, the mechanisms still to be elucidated.

Conclusion

Hyperbaric oxygen potentiates angiogenesis and diabetic wound healing by activating HIF-1α signaling, so as to promote the expression of VEGF/SDF-1 in HSF and the expression of VEGFR/CXCR4 in HUVECS, ultimately to promote the proliferation of HSF and the angiogenesis of HUVECS.

Methods

Diabetic foot mice model was established, and treated with hyperbaric oxygen. Haematoxylin & eosin (H&E) staining and Masson's trichrome staining were used for the analysis of wound healing. Human skin fibroblast (HSF) and human umbilical vein endothelial cell (HUVECS) were exposed to high glucose and hyperbaric oxygen for studying the mechanism of hyperbaric oxygen promoted wound healing in vitro. Wound healing assay, reactive oxygen species (ROS) assay, cell proliferation assay and tube formation assay were used for the analysis of wound healing. Quantitative-polymerase chain reaction (Q-PCR), Western blotting and enzyme-linked immunosorbent assay (ELISA) were used for the analysis of gene expression.

Results

HBOT facilitated wound healing in DFU mice model, and promoted the expression of HIF-1α, NF-κB, VEGFA, SDF-1, VEGFR2 and CXCR4. Hyperbaric oxygen promoted the proliferation, migration and ROS production, as well as the expression of SDF-1 and VEGFA in HSF. HBOT stimulated the proliferation, migration and tube formation, as well as the expression of CXCR4 and VEGFR2 in HUVECS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。