Blockade of neuronal nitric oxide synthase reduces cone cell death in a model of retinitis pigmentosa

阻断神经元一氧化氮合酶可减少视网膜色素变性模型中的视锥细胞死亡

阅读:5
作者:Keiichi Komeima, Shinichi Usui, Jikui Shen, Brian S Rogers, Peter A Campochiaro

Abstract

Retinitis pigmentosa (RP) is a group of diseases in which many different mutations cause rod photoreceptor cells to die and then gradually cone photoreceptors die due to progressive oxidative damage. In this study, we have shown that peroxynitrite-induced nitrosative damage also occurs. In the rd1 mouse model of RP, there was increased staining for S-nitrosocysteine and nitrotyrosine protein adducts that are generated by peroxynitrite. Peroxynitrite is generated from nitric oxide (NO) and superoxide radicals. After degeneration of rods, injection of hydroethidine resulted in strong fluorescence in the retina of rd1 mice, indicating high levels of superoxide radicals, and this was reduced, as was nitrotyrosine staining, by apocynin, suggesting that overaction of NADP(H) oxidase is at least partially responsible. Treatment of rd1 mice with a mixture of nitric oxide synthase (NOS) inhibitors markedly reduced S-nitrosocysteine and nitrotyrosine staining and significantly increased cone survival, indicating that NO-derived peroxynitrite contributes to cone cell death. Treatment with 7-nitroindazole, a relatively specific inhibitor of neuronal NOS, also significantly reduced cone cell death, but aminoguanidine, a relatively specific inhibitor of inducible NOS, did not. These data suggest that NO generated by neuronal NOS exacerbates oxidative damage to cones in RP and that combined therapy to reduce NO and oxidative stress should be considered.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。