The active site dynamics of 4-chlorobenzoyl-CoA dehalogenase

4-氯苯甲酰辅酶A脱卤酶活性位点动力学

阅读:6
作者:E Y Lau, T C Bruice

Abstract

A molecular dynamics study was performed to compare the differences in the active-site dynamics of the wild-type and W137F mutant enzymes of 4-chlorobenzoyl-CoA dehalogenase. Only in the wild-type simulation are conformations formed between the catalytic Asp-145 and 4-chlorobenzoyl-CoA, which resemble the ab initio calculated gas-phase transition-state geometry. In the W137F simulation, the hydrogen bond formed between His-90 and Asp-145 persisted throughout the simulation, causing the carboxylate of Asp-145 to be distant from the benzoyl ring of 4-chlorobenzoyl-CoA. In both simulations, water molecules were able to diffuse into the active site of the enzymes. The trajectories provide insight into the routes that water may use to get into position for the hydrolysis portion of the dehalogenation reaction. In both simulations, the water molecule entering the active site forms a hydrogen bond with Asp-145.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。