A Lactose-Derived CRISPR/Cas9 Delivery System for Efficient Genome Editing In Vivo to Treat Orthotopic Hepatocellular Carcinoma

乳糖衍生的 CRISPR/Cas9 递送系统可在体内进行高效基因组编辑,用于治疗原位肝细胞癌

阅读:4
作者:Yu Qi, Yanli Liu, Bingran Yu, Yang Hu, Nasha Zhang, Yan Zheng, Ming Yang, Fu-Jian Xu

Abstract

Gene editing is a crucial and effective strategy to treat genetic diseases. Safe and effective delivery vectors are specially required for efficient gene editing in vivo of CRISPR/Cas9 system. Interestingly, lactose, a natural saccharide, can specifically bind to asialoglycoprotein receptors, highly expressed on the surface of hepatocellular carcinoma (HCC) cells. Herein, a lactose-derived branched cationic biopolymer (LBP) with plentiful reducible disulfide linkages and hydroxyl groups is proposed as a potential delivery vector of CRISPR/Cas9 system for efficient genome editing in vivo to treat orthotopic HCC. LBP is synthesized via a facile one-pot ring-opening reaction. LBP possesses excellent compacting ability, degradability, biocompatibility, gene transfection performances, and HCC-targeting ability. LBP-mediated delivery of classical pCas9-survivin, which can target and knockout survivin oncogene, produces efficient gene editing performances, and superb anti-cancer activities in orthotopic HCC mouse models. This study provides an attractive and safe strategy for the rational design of CRISPR/Cas9 delivery system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。