Transformation of isopropylamine to L-alaninol by Pseudomonas sp. strain KIE171 involves N-glutamylated intermediates

假单胞菌 KIE171 菌株将异丙胺转化为 L-丙氨醇涉及 N-谷氨酰化中间体

阅读:5
作者:Susana I de Azevedo Wäsch, Jan R van der Ploeg, Tere Maire, Alice Lebreton, Andreas Kiener, Thomas Leisinger

Abstract

Pseudomonas sp. strain KIE171 was able to grow with isopropylamine or L-alaninol [S-(+)-2-amino-1-propanol] as the sole carbon source, but not with D-alaninol. To investigate the hypothesis that L-alaninol is an intermediate in the degradation of isopropylamine, two mini-Tn5 mutants unable to utilize both isopropylamine and L-alaninol were isolated. Whereas mutant KIE171-BI transformed isopropylamine to L-alaninol, mutant KIE171-BII failed to do so. The two genes containing a transposon insertion were cloned, and the DNA regions flanking the insertions were sequenced. Two clusters, one comprising eight ipu (isopropylamine utilization) genes (ipuABCDEFGH) and the other encompassing two genes (ipuI and orf259), were identified. Comparisons of sequences of the deduced Ipu proteins and those in the database suggested that isopropylamine is transported into the cytoplasm by a putative permease, IpuG. The next step, the formation of gamma-glutamyl-isopropylamide from isopropylamine, ATP, and L-glutamate, was shown to be catalyzed by IpuC, a gamma-glutamylamide synthetase. gamma-Glutamyl-isopropylamide is then subjected to stereospecific monooxygenation by the hypothetical four-component system IpuABDE, thereby yielding gamma-glutamyl-L-alaninol [gamma(L-glutamyl)-L-hydroxy-isopropylamide]. Enzymatic hydrolysis by a hydrolase, IpuF, was shown to finally liberate L-alaninol and to regenerate L-glutamate. No gene(s) encoding an enzyme for the next step in the degradation of isopropylamine was found in the ipu clusters. Presumably, L-alaninol is oxidized by an alcohol dehydrogenase to yield L-2-aminopropionaldehyde or it is deaminated by an ammonia lyase to propionaldehyde. Genetic evidence indicated that the aldehyde formed is then further oxidized by the hypothetical aldehyde dehydrogenases IpuI and IpuH to either L-alanine or propionic acid, compounds which can be processed by reactions of the intermediary metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。