Direct observation of reversible electronic energy transfer involving an iridium center

直接观察涉及铱中心的可逆电子能量转移

阅读:6
作者:Sergey A Denisov, Yanouk Cudré, Peter Verwilst, Gediminas Jonusauskas, Marta Marín-Suárez, Jorge Fernando Fernández-Sánchez, Etienne Baranoff, Nathan D McClenaghan

Abstract

A cyclometalated iridium complex is reported where the core complex comprises naphthylpyridine as the main ligand and the ancillary 2,2'-bipyridine ligand is attached to a pyrene unit by a short alkyl bridge. To obtain the complex with satisfactory purity, it was necessary to modify the standard synthesis (direct reaction of the ancillary ligand with the chloro-bridged iridium dimer) to a method harnessing an intermediate tetramethylheptanolate-based complex, which was subjected to acid-promoted removal of the ancillary ligand and subsequent complexation. The photophysical behavior of the bichromophoric complex and a model complex without the pendant pyrene were studied using steady-state and time-resolved spectroscopies. Reversible electronic energy transfer (REET) is demonstrated, uniquely with an emissive cyclometalated iridium center and an adjacent organic chromophore. After excited-state equilibration is established (5 ns) as a result of REET, extremely long luminescence lifetimes of up to 225 μs result, compared to 8.3 μs for the model complex, without diminishing the emission quantum yield. As a result, remarkably high oxygen sensitivity is observed in both solution and polymeric matrices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。