Time is encoded by methylation changes at clustered CpG sites

时间由聚集的 CpG 位点的甲基化变化编码

阅读:4
作者:Bracha-Lea Ochana, Daniel Nudelman, Daniel Cohen, Ayelet Peretz, Sheina Piyanzin, Ofer Gal, Amit Horn, Netanel Loyfer, Miri Varshavsky, Ron Raisch, Ilona Shapiro, Yechiel Friedlander, Hagit Hochner, Benjamin Glaser, Yuval Dor, Tommy Kaplan, Ruth Shemer

Abstract

Age-dependent changes in DNA methylation allow chronological and biological age inference, but the underlying mechanisms remain unclear. Using ultra-deep sequencing of >300 blood samples from healthy individuals, we show that age-dependent DNA methylation changes are regional and occur at multiple adjacent CpG sites, either stochastically or in a coordinated block-like manner. Deep learning analysis of single-molecule patterns in two genomic loci achieved accurate age prediction with a median error of 1.46-1.7 years on held-out human blood samples, dramatically improving current epigenetic clocks. Factors such as gender, BMI, smoking and other measures of biological aging do not affect chronological age inference. Longitudinal 10-year samples revealed that early deviations from epigenetic age are maintained throughout life and subsequent changes faithfully record time. Lastly, the model inferred chronological age from as few as 50 DNA molecules, suggesting that age is encoded by individual cells. Overall, DNA methylation changes in clustered CpG sites illuminate the principles of time measurement by cells and tissues, and facilitate medical and forensic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。